Contents
Images
Upload your image
DSS Images Other Images
Related articles
Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.
| The PASTEL catalogue of stellar parameters Aims: The PASTEL catalogue is an update of the [Fe/H] catalogue,published in 1997 and 2001. It is a bibliographical compilation ofstellar atmospheric parameters providing (T_eff, log g, [Fe/H])determinations obtained from the analysis of high resolution, highsignal-to-noise spectra, carried out with model atmospheres. PASTEL alsoprovides determinations of the one parameter T_eff based on variousmethods. It is aimed in the future to provide also homogenizedatmospheric parameters and elemental abundances, radial and rotationalvelocities. A web interface has been created to query the catalogue onelaborated criteria. PASTEL is also distributed through the CDS databaseand VizieR. Methods: To make it as complete as possible, the mainjournals have been surveyed, as well as the CDS database, to findrelevant publications. The catalogue is regularly updated with newdeterminations found in the literature. Results: As of Febuary2010, PASTEL includes 30151 determinations of either T_eff or (T_eff,log g, [Fe/H]) for 16 649 different stars corresponding to 865bibliographical references. Nearly 6000 stars have a determination ofthe three parameters (T_eff, log g, [Fe/H]) with a high qualityspectroscopic metallicity.The catalogue can be queried through a dedicated web interface at http://pastel.obs.u-bordeaux1.fr/.It is also available in electronic form at the Centre de DonnéesStellaires in Strasbourg (http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=B/pastel),at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A111
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Effective temperature scale and bolometric corrections from 2MASS photometry We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.
| Sixth Catalogue of Fundamental Stars (FK6). Part III. Additional fundamental stars with direct solutions The FK6 is a suitable combination of the results of the HIPPARCOSastrometry satellite with ground-based data, measured over a longinterval of time and summarized mainly in the FK5. Part III of the FK6(abbreviated FK6(III)) contains additional fundamental stars with directsolutions. Such direct solutions are appropriate for single stars or forobjects which can be treated like single stars. Part III of the FK6contains in total 3272 stars. Their ground-based data stem from thebright extension of the FK5 (735 stars), from the catalogue of remainingSup stars (RSup, 732 stars), and from the faint extension of the FK5(1805 stars). From the 3272 stars in Part III, we have selected 1928objects as "astrometrically excellent stars", since their instantaneousproper motions and their mean (time-averaged) ones do not differsignificantly. Hence most of the astrometrically excellent stars arewell-behaving "single-star candidates" with good astrometric data. Thesestars are most suited for high-precision astrometry. On the other hand,354 of the stars in Part III are Δμ binaries in the sense ofWielen et al. (1999). Many of them are newly discovered probablebinaries with no other hitherto known indication of binarity. The FK6gives, besides the classical "single-star mode" solutions (SI mode),other solutions which take into account the fact that hidden astrometricbinaries among "apparently single-stars" introduce sizable "cosmicerrors" into the quasi-instantaneously measured HIPPARCOS proper motionsand positions. The FK6 gives, in addition to the SI mode, the "long-termprediction (LTP) mode" and the "short-term prediction (STP) mode". TheseLTP and STP modes are on average the most precise solutions forapparently single stars, depending on the epoch difference with respectto the HIPPARCOS epoch of about 1991. The typical mean error of anFK6(III) proper motion in the single-star mode is 0.59 mas/year. This isa factor of 1.34 better than the typical HIPPARCOS errors for thesestars of 0.79 mas/year. In the long-term prediction mode, in whichcosmic errors are taken into account, the FK6(III) proper motions have atypical mean error of 0.93 mas/year, which is by a factor of about 2better than the corresponding error for the HIPPARCOS values of 1.83mas/year (cosmic errors included).
| UBV photometry of stars whose positions are accurately known. VI Results are presented from UBV photometric observations of 1000 stars ofthe Bright Star Catalogue and the faint extension of the FK5.Observations were carried out between July 1987 and December 1990 withthe 40-cm Cassegrain telescope of the Kvistaberg Observatory.
| Fifth fundamental catalogue. Part 2: The FK5 extension - new fundamental stars The mean positions and proper motions for 3117 new fundamental starsessentially in the magnitude range about 4.5 to 9.5 are given in thisFK5 extension. Mean apparent visual magnitude is 7.2 and is on average2.5 magnitudes fainter then the basic FK5 which has a mean magnitude of4.7. (The basic FK5 gives the mean positions and proper motions for theclassical 1535 fundamental stars). The following are discussed: theobservational material, reduction of observations, star selection, andthe system for the FK5 extension. An explanation and description of thecatalog are given. The catalog of 3117 fundamental stars for the equinoxand epoch J2000.0 and B1950.0 is presented. The parallaxes and radialvelocities for 22 extension stars with large forecasting effects aregiven. Catalogs used in the compilation of the FK5 fundamental catalogare listed.
| Kinematics and properties of F stars near the North Galactic Pole. II - The isothermal disc Radial velocities are given for about 550 photometrically-identifieddisk-population F stars lying within 15 deg of the North Galactic Pole.The overall radial and z-velocity distributions are found to be closelyGaussian, with corrected rms and mean z velocities of 11.3 + or - 0.6and -9.5 + or - 0.5 km/s, respectively. The isothermal kinematics of thepopulation are reflected in the constant velocity dispersion to a zdistance of 400 pc. No systematic variation of either the velocitydispersion or the stellar age with the metallicity-sensitive Stromgrendelta m1 index is noted over a range of ages up to 5 Gyr.
| Further Studies of A-Stars and F-Stars in the Region of the North Galactic Pole - Part Four - a Catalogue of Uvbyr Photometry and Derived Quantities Not Available
| Further Studies of A-Stars and F-Stars in the Region of the North Galactic Pole - Part Three - a Catalogue of Star Names and Positions Not Available
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Jagdhunde |
Right ascension: | 12h43m24.21s |
Declination: | +39°38'20.9" |
Apparent magnitude: | 9.096 |
Proper motion RA: | -11 |
Proper motion Dec: | 1.9 |
B-T magnitude: | 9.616 |
V-T magnitude: | 9.139 |
Catalogs and designations:
|