Főoldal     Alapinformációk     To Survive in the Universe    
Inhabited Sky
    News@Sky     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Sajtó     Bejelentkezés  

HD 116650


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Kinematics of the Scorpius-Centaurus OB association
A fine structure related to the kinematic peculiarities of threecomponents of the Scorpius-Centaurus association (LCC, UCL, and US) hasbeen revealed in the UV-velocity distribution of Gould Belt stars. Wehave been able to identify the most likely members of these groups byapplying the method of analyzing the two-dimensional probability densityfunction of stellar UV velocities that we developed. A kinematicanalysis of the identified structural components has shown that, ingeneral, the center-of-mass motion of the LCC, UCL, and US groupsfollows the motion characteristic of the Gould Belt, notably itsexpansion. The entire Scorpius-Centaurus complex is shown to possess aproper expansion with an angular velocity parameter of 46 ± 8 kms‑1 kpc‑1 for the kinematic centerwith l 0 = ‑40° and R 0 = 110 pc found.Based on this velocity, we have estimated the characteristic expansiontime of the complex to be 21 ± 4 Myr. The proper rotationvelocity of the Scorpius-Centaurus complex is lower in magnitude, isdetermined less reliably, and depends markedly on the data quality.

SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets around Young Stars
We present a review of precursor observing programs for the SIMPlanetQuest Key Project devoted to detecting Jupiter-mass planets aroundyoung stars. In order to ensure that the stars in the sample are free ofvarious sources of astrometric noise that might impede the detection ofplanets, we have initiated programs to collect photometry, high-contrastimages, interferometric data, and radial velocities for stars in boththe northern and southern hemispheres. We have completed a high-contrastimaging survey of target stars in Taurus and the Pleiades and found nodefinitive common proper motion companions within 1" (140 AU) of the SIMtargets. Our radial velocity surveys have shown that many of the targetstars in Sco-Cen are fast rotators, and a few stars in Taurus and thePleiades may have substellar companions. Interferometric data of a fewstars in Taurus show no signs of stellar or substellar companions withseparations of 5-50 mas. The photometric survey suggests thatapproximately half of the stars initially selected for this program arevariable to a degree (1 σ > 0.1 mag) that would degrade theastrometric accuracy achievable for that star. While the precursorprograms are still a work in progress, we provide a comprehensive listof all targets and rank them according to their viability as a result ofthe observations taken to date. The observable that removes by far themost targets from the SIM young stellar object (YSO) program isphotometric variability.

Unraveling the Origins of Nearby Young Stars
A systematic search for close conjunctions and clusterings in the pastof nearby stars younger than the Pleiades is undertaken, which mayreveal the time, location, and mechanism of formation of these oftenisolated, disconnected from clusters and star-forming regions, objects.The sample under investigation includes 101 T Tauri, post-TT, andmain-sequence stars and stellar systems with signs of youth, culled fromthe literature. Their Galactic orbits are traced back in time and nearapproaches are evaluated in time, distance, and relative velocity.Numerous clustering events are detected, providing clues to the originof very young, isolated stars. Each star's orbit is also matched withthose of nearby young open clusters, OB and TT associations andstar-forming molecular clouds, including the Ophiuchus, Lupus, CoronaAustralis, and Chamaeleon regions. Ejection of young stars from openclusters is ruled out for nearly all investigated objects, but thenearest OB associations in Scorpius-Centaurus, and especially, the denseclouds in Ophiuchus and Corona Australis have likely played a major rolein the generation of the local streams (TWA, Beta Pic, andTucana-Horologium) that happen to be close to the Sun today. The core ofthe Tucana-Horologium association probably originated from the vicinityof the Upper Scorpius association 28 Myr ago. A few proposed members ofthe AB Dor moving group were in conjunction with the coeval Cepheus OB6association 38 Myr ago.

Search for associations containing young stars (SACY). I. Sample and searching method
We report results from a high-resolution optical spectroscopic surveyaimed to search for nearby young associations and young stars amongoptical counterparts of ROSAT All-Sky Survey X-ray sources in theSouthern Hemisphere. We selected 1953 late-type (B-V~≥~0.6),potentially young, optical counterparts out of a total of 9574 1RXSsources for follow-up observations. At least one high-resolutionspectrum was obtained for each of 1511 targets. This paper is the firstin a series presenting the results of the SACY survey. Here we describeour sample and our observations. We describe a convergence method in the(UVW) velocity space to find associations. As an example, we discuss thevalidity of this method in the framework of the β Pic Association.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Formation scenarios for the young stellar associations between galactic longitudes l = 280degr - 360degr
We investigate the spatial distribution, the space velocities and agedistribution of the pre-main sequence (PMS) stars belonging toOphiuchus, Lupus and Chamaeleon star-forming regions (SFRs), and of theyoung early-type star members of the Scorpius-Centaurus OB association.These young stellar associations extend over the galactic longituderange from 280degr to 360degr , and are at a distance interval ofaround 100 and 200 pc. This study is based on a compilation ofdistances, proper motions and radial velocities from the literature forthe kinematic properties, and of basic stellar data for the constructionof Hertzsprung-Russel diagrams. Although there was no well-known OBassociation in Chamaeleon, the distances and the proper motions of agroup of 21 B- and A-type stars, taken from the Hipparcos Catalogue,lead us to propose that they form a young association. We show that theyoung early-type stars of the OB associations and the PMS stars of theSFRs follow a similar spatial distribution, i.e., there is no separationbetween the low and the high-mass young stars. We find no difference inthe kinematics nor in the ages of these two populations studied.Considering not only the stars selected by kinematic criteria but thewhole sample of young early-type stars, the scattering of their propermotions is similar to that of the PMS stars and all the young starsexhibit a common direction of motion. The space velocities of theHipparcos PMS stars of each SFR are compatible with the mean values ofthe OB associations. The PMS stars in each SFR span a wide range of ages(from 1 to 20 Myr). The ages of the OB subgroups are 8-10 Myr for UpperScorpius (US), and 16-20 Myr for Upper Centaurus Lupus (UCL) and forLower Centaurus Crux (LCC). Thus, our results do not confirm that UCL isolder than the LCC association. Based on these results and theuncertainties associated with the age determination, we cannot say thatthere is indeed a difference in the age of the two populations. Weanalyze the different scenarios for the triggering of large-scalestar-formation that have been proposed up to now, and argue that mostprobably we are observing a spiral arm that passes close to the Sun. Thealignment of young stars and molecular clouds and the average velocityof the stars in the opposite direction to the Galactic rotation agreewith the expected behavior of star formation in nearby spiral arms.Tables 1 to 4 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/913

Post-T Tauri Stars in the Nearest OB Association
We present results of a spectroscopic survey of X-ray- andproper-motion-selected samples of late-type stars in the LowerCentaurus-Crux (LCC) and Upper Centaurus-Lupus (UCL) subgroups of thenearest OB association: Scorpius-Centaurus. The primary goals of thesurvey are to determine the star formation history of the OB subgroupsand to assess the frequency of accreting stars in a sample dominated by``post-T Tauri'' pre-main-sequence (PMS) stars. We investigate twosamples: (1) proper-motion candidates from the ACT Catalog and TychoReference Catalog (TRC) with X-ray counterparts in the ROSAT All-SkySurvey (RASS) Bright Source Catalog and (2) G- and K-type stars in theHipparcos catalog found to be candidate members by de Zeeuw et al. Weobtained optical spectra of 130 candidates with the Siding Spring 2.3 mdual-beam spectrograph. PMS stars were identified by (1) strong Liλ6707 absorption, (2) subgiant surface gravities, (3) propermotions consistent with Sco-Cen membership, and (4) H-R diagrampositions consistent with being PMS. We find 93% of the RASS-ACT/TRCstars to be probable PMS members, compared with 73% of the Hipparcoscandidates. We demonstrate that measuring the gravity-sensitive bandratio of Sr II λ4077 to Fe I λ4071 is a valuable means ofdiscriminating PMS and zero-age main-sequence (ZAMS) stars. Usingsecular parallaxes and Hipparcos, Tycho-2, and Two Micron All Sky Surveyphotometry, we construct an H-R diagram. Depending on the choice ofpublished evolutionary tracks, we find the mean ages of the PMSpopulations to range between 17 and 23 Myr for LCC and 15 and 22 Myr forUCL. Taking into account observational errors, it appears that 95% ofthe low-mass star formation in each subgroup must have occurred in lessthan 8 Myr (LCC) and 12 Myr (UCL). Using the Bertelli et al. tracks, wefind main-sequence turnoff ages for Hipparcos B-type members to be16+/-1 Myr for LCC and 17+/-1 Myr for UCL. Contrary to previousfindings, it appears that LCC is coeval with, or slightly older than,UCL. The secular parallaxes of the Sco-Cen PMS stars yield distances of85-215 pc, with 12 of the LCC members lying within 100 pc of the Sun.Only one out of 110 (0.9+2.1-0.8%; 1 σ) PMSsolar-type stars in the sample with ages of 13+/-1 (s.e.)+/-6 (1σ) Myr and masses of 1.3+/-0.2 (1 σ) Msolar showsboth enhanced Hα emission and a K-band excess indicative ofaccretion from a truncated circumstellar disk: the nearby (d~=86 pc)classical T Tauri star PDS 66.

Astrometric radial velocities. III. Hipparcos measurements of nearby star clusters and associations
Radial motions of stars in nearby moving clusters are determined fromaccurate proper motions and trigonometric parallaxes, without any use ofspectroscopy. Assuming that cluster members share the same velocityvector (apart from a random dispersion), we apply a maximum-likelihoodmethod on astrometric data from Hipparcos to compute radial and spacevelocities (and their dispersions) in the Ursa Major, Hyades, ComaBerenices, Pleiades, and Praesepe clusters, and for theScorpius-Centaurus, alpha Persei, and ``HIP 98321'' associations. Theradial motion of the Hyades cluster is determined to within 0.4 kms-1 (standard error), and that of its individual stars towithin 0.6 km s-1. For other clusters, Hipparcos data yieldastrometric radial velocities with typical accuracies of a few kms-1. A comparison of these astrometric values withspectroscopic radial velocities in the literature shows a good generalagreement and, in the case of the best-determined Hyades cluster, alsopermits searches for subtle astrophysical differences, such as evidencefor enhanced convective blueshifts of F-dwarf spectra, and decreasedgravitational redshifts in giants. Similar comparisons for the ScorpiusOB2 complex indicate some expansion of its associations, albeit slowerthan expected from their ages. As a by-product from the radial-velocitysolutions, kinematically improved parallaxes for individual stars areobtained, enabling Hertzsprung-Russell diagrams with unprecedentedaccuracy in luminosity. For the Hyades (parallax accuracy 0.3 mas), itsmain sequence resembles a thin line, possibly with wiggles in it.Although this main sequence has underpopulated regions at certaincolours (previously suggested to be ``Böhm-Vitense gaps''), suchare not visible for other clusters, and are probably spurious. Futurespace astrometry missions carry a great potential for absoluteradial-velocity determinations, insensitive to the complexities ofstellar spectra. Based on observations by the ESA Hipparcos satellite.Extended versions of Tables \ref{tab1} and \ref{tab2} are available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.125.8) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/381/446

The 74th Special Name-list of Variable Stars
We present the Name-list introducing GCVS names for 3153 variable starsdiscovered by the Hipparcos mission.

A HIPPARCOS Census of the Nearby OB Associations
A comprehensive census of the stellar content of the OB associationswithin 1 kpc from the Sun is presented, based on Hipparcos positions,proper motions, and parallaxes. It is a key part of a long-term projectto study the formation, structure, and evolution of nearby young stellargroups and related star-forming regions. OB associations are unbound``moving groups,'' which can be detected kinematically because of theirsmall internal velocity dispersion. The nearby associations have a largeextent on the sky, which traditionally has limited astrometricmembership determination to bright stars (V<~6 mag), with spectraltypes earlier than ~B5. The Hipparcos measurements allow a majorimprovement in this situation. Moving groups are identified in theHipparcos Catalog by combining de Bruijne's refurbished convergent pointmethod with the ``Spaghetti method'' of Hoogerwerf & Aguilar.Astrometric members are listed for 12 young stellar groups, out to adistance of ~650 pc. These are the three subgroups Upper Scorpius, UpperCentaurus Lupus, and Lower Centaurus Crux of Sco OB2, as well as VelOB2, Tr 10, Col 121, Per OB2, alpha Persei (Per OB3), Cas-Tau, Lac OB1,Cep OB2, and a new group in Cepheus, designated as Cep OB6. Theselection procedure corrects the list of previously known astrometricand photometric B- and A-type members in these groups and identifiesmany new members, including a significant number of F stars, as well asevolved stars, e.g., the Wolf-Rayet stars gamma^2 Vel (WR 11) in Vel OB2and EZ CMa (WR 6) in Col 121, and the classical Cepheid delta Cep in CepOB6. Membership probabilities are given for all selected stars. MonteCarlo simulations are used to estimate the expected number of interloperfield stars. In the nearest associations, notably in Sco OB2, thelater-type members include T Tauri objects and other stars in the finalpre-main-sequence phase. This provides a firm link between the classicalhigh-mass stellar content and ongoing low-mass star formation. Detailedstudies of these 12 groups, and their relation to the surroundinginterstellar medium, will be presented elsewhere. Astrometric evidencefor moving groups in the fields of R CrA, CMa OB1, Mon OB1, Ori OB1, CamOB1, Cep OB3, Cep OB4, Cyg OB4, Cyg OB7, and Sct OB2, is inconclusive.OB associations do exist in many of these regions, but they are eitherat distances beyond ~500 pc where the Hipparcos parallaxes are oflimited use, or they have unfavorable kinematics, so that the groupproper motion does not distinguish it from the field stars in theGalactic disk. The mean distances of the well-established groups aresystematically smaller than the pre-Hipparcos photometric estimates.While part of this may be caused by the improved membership lists, arecalibration of the upper main sequence in the Hertzsprung-Russelldiagram may be called for. The mean motions display a systematicpattern, which is discussed in relation to the Gould Belt. Six of the 12detected moving groups do not appear in the classical list of nearby OBassociations. This is sometimes caused by the absence of O stars, but inother cases a previously known open cluster turns out to be (part of) anextended OB association. The number of unbound young stellar groups inthe solar neighborhood may be significantly larger than thoughtpreviously.

ROSAT PSPC observations of globular clusters
We present deep pointed observations of nine globular clusters obtainedwith the Rosat position-sensitive proportional counter (PSPC). Theclusters observed were selected to be nearby, have low interstellarabsorption towards them, and to have high collision number. X-raysources are detected in the cores of seven of them, at luminosities ofapproximately 1 - 6 x 1032 erg/s. At least two of these aremultiple. The sources are too dim to obtain spectra of them, butanalysis of the X-ray colors indicates that their spectra are not allidentical. Four of the seven have colors indicating soft spectra, withblackbody temperature kappa T less than or approximately = 0.3 keV. Softspectra can be excluded for the other three sources.

A large, complete, volume-limited sample of G-type dwarfs. I. Completion of Stroemgren UVBY photometry
Four-colour photometry of potential dwarf stars of types G0 to K2,selected from the Michigan Spectral Catalogues (Vol. 1-3), has beencarried out. The results are presented in a catalogue containing 4247uvby observations of 3900 stars, all south of δ = -26deg. Theoverall internal rms errors of one observation (transformed to thestandard system) of a program star in the interval 8.5 < V < 10.5are 0.0044, 0.0021, 0.0039, and 0.0059, respectively, in V, b-y, m_1_ ,and c_1_. The purpose of the catalogue, combined with earliercatalogues, is to allow selection of a large, complete, volume-limitedsample of G- and K-type dwarfs, investigate their metallicitydistribution, and compare it to predictions of various models ofgalactic chemical evolution. Future papers in this series will discussthese subjects.

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Kentaur
Rektaszcenzió:13h25m47.83s
Deklináció:-48°14'57.8"
Vizuális fényesség:9.776
RA sajátmozgás:-41.5
Dec sajátmozgás:-17.2
B-T magnitude:10.504
V-T magnitude:9.837

Katalógusok és elnevezések:
Megfelelő nevek   (Edit)
HD 1989HD 116650
TYCHO-2 2000TYC 8252-634-1
USNO-A2.0USNO-A2 0375-18174466
HIPHIP 65517

→ További katalógusok és elnevezések lekérése VizieR-ből